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Abstract

Many organizations across the United States bear the responsibility of operating the electric grid and ensuring
its reliability. Integral to the maintenance of grid reliability is the anticipation and proactive response to
projected abnormal system status as a result of supply deficiencies. ISO New England, one of these grid
operators, maintains public archives of power system forecasts and occurrences of abnormal grid conditions.
Using this public data with common data mining techniques, we build a binary classification model that
performs reasonably well in predicting the occurrences of abnormal status declarations. Support vector
machine and gradient boosted tree classifiers have the ability to correctly identify 7 of 11 occurrences of
abnormal conditions while still attempting to minimize false positive rate. Among all predictors, these models
place high weight on projected load, anticipated cold weather outages, available generation, and projected
surplus, and thus we identify these factors as most important in the prediction of power grid abnormality.



1 Introduction
1.1 Background
Planning for and mitigating interruptions to electric grid reliability is one of many crucial responsibilities
for the assorted agencies who operate the grid across the United States. The non-governmental bodies in
charge of grid operation are known as Regional Transmission Organizations (RTOs) or Independent System
Operators (ISOs) and perform their duties under regulation by the United States government. One such
RTO/ISO is ISO New England (ISO-NE), the sole grid operator for the New England region of the United
States. Grid operators like ISO-NE monitor and forecast the electric power system every day, tracking factors
which may threaten the stability of the grid.

1.2 Research Questions
This report addresses two key questions:

1. Can public data on power grid conditions and weather factors be used to build a binary classification
model that accurately predicts the occurrence of abnormal grid conditions?

2. Which factors are the most influential in the occurrence of abnormal grid conditions?

1.3 Strategies and Outline
Historical grid forecasts and abnormal system status instances are available to the public on the ISO-NE
website. Through scripted web scraping and data processing, these files were downloaded, matched, and
cleaned to produce a unified dataset. This data will be discussed in greater detail in the next section, including
findings from exploratory data analysis.

Then, the training and evaluation of four classes of binary classification models will be described. These are:

• Logistic Regression
• Support Vector Machine
• k-Nearest Neighbors
• Gradient Boosted Trees

Key findings from the modeling and evaluation will be presented, followed by their implications and the
conclusions extracted from this data mining project. Finally, an overview of future work and lessons learned
will be given to conclude this report.

2 Data Source and Description
2.1 Source and Processing
The data for this project comes from two public archives published by ISO-NE. These archives provide daily
records dating back to the beginning of the year 2017. The web scraper for this project pulled all records
from January 1st, 2017 to December 31, 2023. Between the two archives, there is at least one file for each
day in this seven-year span.

The first data source is the Power System Status Archive [4], containing every instance ISO-NE has declared
an abnormal system status. These records are provided as a single HTML or CSV file for each year on record.
Second is the Seven Day Capacity Forecast Archive [5], which contains historic capacity, demand, and weather
forecasts for each day, from a range of one to six days ahead. This data source also provides data downloads
in HTML or CSV format.

By treating each date occurring within the two datasets as a unique key, the files were merged to produce a
single dataset with one row corresponding to a single date. For each date, the columns of this unified dataset
comprise of power system forecast values for that date as predicted from one to six days ahead, as well as
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whether certain abnormal grid conditions were declared on that date. Table 1 provides a sample of these
variables. For a full listing, see Appendix A.

Table 1: A sample of attributes within the unified dataset. Note
that columns ending in “_1” are the one-day-ahead values from the
full dataset.

Column Name Description
Abnormal One or more abnormal statuses declared (Binary)
ACWO_1 Anticipated cold weather outages (MW)
CSO_1 Total capacity supply obligation (MW)
DPB_1 Dew point in Boston (°F)
HTB_1 High temperature in Boston (°F)
ITP_1 Import at time of peak (MW)
OGO_1 Other generation outages (MW)
PS_1 Projected surplus/deficiency (MW)
RRIR_1 Required reserve including replacement (MW)
TGA_1 Total generation available (MW)
TLRR_1 Total load plus required reserve (MW)

For cleaning and reduction purposes, 11 rows were dropped from the original dataset: six contained many
missing values for a specific date and five were dropped to account for the lag values for the first few dates
of 2017. Additionally, one power system forecast attribute was dropped due to a lack of variance. Finally,
all statuses were combined into a single binary indicator of abnormal conditions. As a result, the prepared
dataset contained 2545 daily rows, with 102 numeric features and one binary response.

2.2 Abnormal System Statuses
ISO-NE defines multiple levels of abnormal system declaration. These statuses are not mutually exclusive,
and may occur with others. Table 2 enumerates the specific occurrences of these statuses in the dataset. See
Appendix B for definitions of these statuses.

Table 2: Occurrences of Abnormal Grid Conditions in the ISO-NE
service area from 2017 through 2023.

Abnormal Status(es) Count
Only ACON 31
Only MGEN 1
ACON, OP41, and OP42 1
ACON, OP41, OP42, OP43, and OP45 1
ACON, OP41, OP42, OP43, OP44, and OP45 1

As shown in Table 2, only a total of 35 instances of abnormal status occurred in the date range. This causes a
large class imbalance that introduces some challenges to modeling and evaluation. Strategies for overcoming
these issues will be highlighted in the Methodology section of this report.

2.3 Correlation and Variable Dependence
High correlation was identified between several groups of variables. For example, Boston and Hartford high
temperatures and dew points tended to be highly positively correlated, while the amount of generation
outages and the amount of available generation showed strong negative correlation. Correlation analysis also
uncovered some redundant variables within the dataset. For example, required reserve including replacement
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is merely required reserve plus replacement reserve requirement. In Figure 1, large dark red circles indicate
the strong positive correlation for these temperature and other redundant features, while the small dark blue
circles show strong negative correlation in a small subset of our features.

Figure 1: Strength of correlation between each variable in the prepared dataset.

With a combination of hierarchical feature clustering [2, 7] and knowledge of which factors are merely
combinations of others, a set of features were identified for possible elimination in order to shrink the feature
space. Refer to Appendix C for feature dendrograms before and after elimination.

Using the one-way ANOVA test, means were tested for each predictor between groups which are defined
by occurrence or lack of occurrence of abnormal conditions. From these results, initial conjecture about
important factors was deduced by the F-test statistic and P-values produced. ANOVA test results indicate
that projected surplus/deficiency, projected peak load, and anticipated cold weather outages are among the
factors with the most significant difference in between-group means. Figure 2 shows an example boxplot and
density plot comparing the distribution of values for projected surplus/deficiency when abnormal conditions
occur vs when they do not. There is a clear difference in the central tendency of each group.

Later in this report, feature importance for the best performing models will confirm some of this conjecture.
It must be noted that these tests were not rigorous, as verifications were not performed related to the ANOVA
normality and variance assumptions. Nonetheless, it was useful and illustrative for speculative purposes. In
the following section, we will present an overview of the modeling methods used in this project.
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Figure 2: Distribution of Projected Surplus/Deficiency when abnormal conditions occur and when they do
not occur.

3 Methodology
3.1 Minority Class Oversampling and Data Splitting
As noted in Section 2.2, only 35 out of 2545 observations in the prepared dataset are of actual dates of
abnormal system status. This small 1.38% minority presented a challenge in the selection of cross validation
and test evaluation metrics. For example, it would be easy to achieve high accuracy when predicting all
cases to have normal status. Therefore, the Synthetic Minority Oversampling Technique (SMOTE) [3]
was employed to balance the training data. First, the prepared full dataset was split with 70% reserved
for training and 30% held for testing. This is a common test/train split proportion and resulted in a test
dataset size of 764 observations. Additionally, splitting was performed in a stratified fashion, preserving
the proportion of abnormal status observations within the test and train subsets. Then, on the training set
only, SMOTE was leveraged to oversample the observations of abnormal status to balance the proportion of
abnormal observations with normal ones. SMOTE oversampling resulted in a new training dataset size of
3514 observations.

3.2 Feature Selection
For this study, models using variables for one day ahead as well as up to six days ahead were explored. Any
models built using only one-day-ahead variables could possibly demonstrate the ability of simpler forecasting
with less computationally expensive training, providing immense value to grid operators. Usage of values as
predicted up to 6 days ahead may provide more complex information that could be crucial in more accurately
predicting the response.

Feature selection on the one-day-ahead factors was performed using the hierarchical distance-based clustering
technique first mentioned in Section 2.3. Features at a distance threshold of less than 0.25 were identified
(Appendix C). Then, using intuitive knowledge of which features are merely combinations of others, seven
features were eliminated, thus reducing the number of one-day-ahead predictors for the reduced models from
17 to 10.

Finally, a feature set for a family of expanded models was produced that incorporates these narrowed features
for all one through six days ahead. This expanded feature set contains 60 predictors overall. For example:
an observation for January 1, 2020 contains features for high temperature in Boston as predicted one day
ahead, two days ahead, and so on. Acknowledging the lack of complete rigor in this process, the full set of
single-day features were not tested on all one through six days ahead. For technical purposes, the additional
computational cost would have been a hindrance to this study.
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3.3 Principal Components Analysis
In efforts to identify a set of engineered features that may reduce model complexity while achieving high
predictive power, principal component analysis (PCA) was performed on each of the three feature sets. The
specific number of principal components to use was selected as a hyper-parameter during cross-validation.

3.4 Classification Methods
A mix of parametric and non-parametric methods were utilized with each of the three feature sets. Before
PCA or model fitting, all predictor values were centered and scaled. With both PCA and non-PCA variants,
six total feature sets were used to fit each model family. These models and their benefits are as follows:

• Logistic Regression - Easy to interpret and fit, compatible with regularization to account for multi-
collinearity or sparsity.

• Support Vector Machine (SVM) - Linear kernel is easy to interpret, alternate kernel methods to account
for non-linearity.

• k-Nearest Neighbors (KNN) - Easy to interpret, can capture non-linearity.
• Gradient Boosted Trees (GBT) - Multi-tree method that fits multiple classifiers to generally perform

better performance than a single model.

Except for GBT, all model types are implemented by the sklearn package in the Python language. GBT
uses the xgboost Python package for its implementation.

3.5 Model Tuning and Metrics
With 10-fold cross validation, optimal hyperparameters were chosen for each of the above, then the full
training set was fit on each. In cross validation, the F2 score was used to select the best model of all
candidates. The F2 score is based on the harmonic mean of precision and recall, with more weight given to
recall. Precision is a measure of how many predicted positives are truly positive and is important when false
positives are costly. Recall is a measure of how many actual positives were identified by the model, and is
important when there is high cost associated with false negatives. Therefore, using the F2 score accounts for
both, while placing more weight on avoiding misclassifying an actual abnormal system status as normal.

After cross validation, the models were then refit with the full training set and evaluated on the test set.
Using the F2 score, the best model of each type was identified. These results will be discussed in the next
section.

4 Results
4.1 Selected Models
After retraining and predicting with each model on the test set, F2 score was used to identify the best
performing model for each type. These models are described by Table 3.

Table 3: Best models of each type, according to F2 score.

Model Type Feature Set Selected Parameters Precision Recall F2
Logistic Regression 1-6 days ahead No regularization,

threshold = 0.22
0.04265 0.8182 0.1765

SVM 1-6 days ahead Linear kernel,
C = 0.1

0.06087 0.6364 0.2201

KNN One day ahead,
reduced features

n_neighbors = 61,
distance weighting,
Manhattan distance

0.02532 0.9091 0.1139

GBT 1-6 days ahead See Appendix D 0.06306 0.6364 0.2258
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The best-performing model according to F2 score was shown to be the Gradient Boosted Trees method,
with an F2 score of approximately 0.23. The GBT model just edges out over the SVM, which has an F2
score of just about 0.22. Despite decent recall for all models, their precision values do appear to be quite
abysmal. The confusion matrix for the GBT model (Figure 3) shows that the model predicts 104 false
positives, contributing to the low precision. Confusion matrices for all models in Table 3 are available in
Appendix E.

Figure 3: Confusion Matrix for test predictions by the selected GBT model.

4.2 Feature Importance
From the Logistic Regression, (Linear) SVM, and GBT models, it is easy to extract metrics for feature
importance. For Logistic Regression and SVM, the absolute value of the coefficients corresponding to each
feature provide a good estimate of relative feature importance. On the other hand, the metric for GBT is
a measure of overall information gain provided by the feature. Table 4 lists the top five highest weighted
features for these three models. KNN is excluded from the table as it does not provide an easily available
metric for feature importance. A full listing of feature importance is provided in Appendix F.

Table 4: Top 5 features for Logistic Regression, SVM, and GBT
models, ranked by highest importance first.

Rank
Logistic Regression Feature
(Variable Name) SVM Feature (Variable Name) GBT Feature (Variable Name)

1 Predicted Peak Load - One
Day Ahead (PPL_1)

Predicted Peak Load - One Day
Ahead (PPL_1)

Projected Surplus/Deficiency -
Three Days Ahead (PS_3)

2 Total Generation Available -
Two Days Ahead (TGA_2)

Anticipated Cold Weather
Outages - Five Days Ahead
(ACWO_5)

Predicted Peak Load - Two
Days Ahead (PPL_2)

3 Predicted Peak Load - Two
Days Ahead (PPL_2)

Anticipated Cold Weather
Outages - Six Days Ahead
(ACWO_6)

Predicted Peak Load - One Day
Ahead (PPL_1)

4 Predicted Peak Load - Four
Days Ahead (PPL_4)

Total Generation Available - Two
Days Ahead (TGA_2)

Projected Surplus/Deficiency -
Six Days Ahead (PS_6)

5 Total Generation Available -
Four Days Ahead (TGA_4)

Projected Surplus/Deficiency -
One Day Ahead (PS_1)

Anticipated Cold Weather
Outages - One Day Ahead
(ACWO_1)
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5 Conclusions
5.1 Research Questions
Regarding the ability to build a binary classifier that can accurately predict occurrences of abnormal power
grid conditions, it is indeed possible to correctly detect real occurrences of abnormality with moderate to high
success. The trade-off for higher abnormality detection comes at the cost of increased false positives. When
choosing an evaluation metric, F2 was selected to ensure higher weight was placed on recall, or detection
of true positives among all actual positives. The consequences of failing to prepare for a strained power
grid could be very disastrous, as critical infrastructure and healthcare may be severely affected by blackouts
or other interruptions to electric service. [8] While the class imbalance problem likely contributes to high
prevalence of false positives in all model types, the cost of a false positive would likely be deemed to be far
lower than that of a false negative.

As the GBT and SVM methods perform very closely according to F2 score, either of these classifiers trained
with expanded feature set of up to six days ahead provide the best performance in detecting true positives
while also minimizing false positives.

Both top-performing models assign high relative weight to four key types of data: load, generation, outages,
and surplus. For both models, values from one through six days ahead appear in the top five most important
features, thus indicating the utility of these extended forecast values in prediction of grid abnormality. These
importance measures do also support the conjecture from Section 2.3 regarding which factors are most related
to abnormality.

5.2 Future Work and Shortcomings
One unique challenge caused by severe response class imbalance is the small number of actual positive cases
available to test against during both cross-validation and test set evaluation. With a larger dataset, and thus
a higher count of positive occurrences, an improved model that further decreases the false positive rate while
keeping true positive detection rate high may be possible to build. ISO-NE provides many more years of
historic data in unstructured format. Additional effort to extract and structure this data may allow for closer
approximations of true patterns to be captured from a larger dataset.

Also related to this issue is the ability to model the response as a multinomial categorical variable. As the
current prepared dataset stands, most specific abnormal statuses appear fewer than ten times, and sometimes
just once. This number is far too small to be able to learn any meaningful patterns in the occurrence of
these specific grid statuses. A larger dataset with a sufficient number of occurrences for more specific grid
conditions may allow for more accurate modeling without losing unique information that may be obscured by
combining all statuses into a single response.

Given enough computing power to deal with the added complexity, variable selection could additionally be
performed on a more systematic basis for all models independently, using more rigorous empirical techniques
or information-based criteria. An attempt to specifically address correlation and multicollinearity was made
by eliminating features which scored low on cluster distance and which were known to be combinations of
other features. While additional L2 regularization and random feature selection in some of the employed
models are helpful, remaining useless or highly correlated features may still muddy the waters in model
building, providing lower performance than is possible with the given information.

5.3 Lessons Learned
This section provides an overview of what this project we have discussed has taught me, and the new
challenges I faced in its execution. First, this project provided an interesting opportunity to scrape and
mine real-world data. This experience included the programming of automatic data retrieval, inspection,
and cleaning the data at a previously unexplored scale. Adequate research was required to understand what
each of the candidate variables were really telling us. With such a real-world dataset, the class imbalance
problem was another great learning experience. Second, while it is fortunate that there have been so few
cases of power grid abnormality in the ISO-NE service area, the small minority of abnormal cases presented a
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problem I had not encountered. Researching and enacting oversampling with SMOTE to handle this issue
was a valuable learning experience. Next, the experience of systematically tuning many different models and
building processing pipelines involving standardization, dimensionality reduction, parameter grid search, and
cross-validation was unlike many of the smaller scope experiences I have encountered on most homeworks and
class assignments. Learning the recommended approaches to performing so many steps in the data mining
process to avoid data leakage was quite interesting. Finally, I learned a lot more about classification metrics
beyond accuracy and AUC. In my experience up to this project, not much attention was given to precision,
recall, F1, F2, or Fβ . Learning how to use these metrics to balance performance when, for example, false
negatives are far more costly, was a great learning opportunity.

This project has functioned well as an exhibition of many skills and tools learned in this course. From report
writing to new types of models–their strengths, weaknesses, and considerations, I found many lessons from
the course and especially discussions from the Piazza forum to be useful in informing my approach.
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Appendix A

Table 5: Listing of response variable and all one-day-ahead predic-
tors in the full dataset. Note that all predictors also have values
for two through six days ahead.

Column Name Description
Abnormal One or more abnormal statuses declared (binary)
ACWO_1 Anticipated cold weather outages (MW)
ADMO_1 Anticipated de-list offered (MW)
ADRR_1 Available demand response (MW)
CSO_1 Total capacity supply obligation (MW)
DPB_1 Dew point in Boston (°F)
DPH_1 Dew point in Hartford (°F)
HTB_1 High temperature in Boston (°F)
HTH_1 High temperature in Hartford (°F)
ITP_1 Import at time of peak (MW)
OGO_1 Other generation outages (MW)
PPL_1 Predicted peak load (MW)
PS_1 Projected surplus/deficiency (MW)
RRIR_1 Required reserve including replacement (MW)
RRR_1 Replacement reserve requirement (MW)
TAGI_1 Total available generation and imports (MW)
TGA_1 Total generation available (MW)
TLRR_1 Total load plus required reserve (MW)
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Appendix B

Table 6: ISO-NE Abnormal Power System Statuses. Statuses not
listed did not occur in the timeframe for this study.

Short
Name/Variable
Name Long Name ISO-NE Definition [6]
ACON Master/Local Control Center

Procedure
“A Master/Local Control Center Procedure No. 2
(M/LCC 2) alert is issued either for the entire region or
for a local area to notify power system personnel and
wholesale electricity market participants when abnormal
conditions on the region’s power system exist or are
anticipated.”

MGEN Minimum Generation Warning “ISO New England declares a Minimum Generation
Emergency [. . .] for one of the following reasons: (1)
ISO forecast projects a potential minimum generation
condition; (2) Potential high frequency due to load and
generation mismatch in ISO New England; (3) Next hour
external transactions will, or possibly will, place the
system in minimum generation warning or emergency
condition; (4) Real-time event occurs that could cause
Minimum Generation Emergency conditions if real-time
only megawatts are not curtailed.”

OP41 OP4 Action 1: Power Caution “This is an advisory that available capacity resources are
insufficient to meet anticipated demand plus operating
reserve requirements, and ISO New England has
implemented OP 4.”

OP42 OP4 Action 2: Emergency
Energy Alert

“ISO New England is declaring an Energy Emergency
Alert (EEA) Level 1.”

OP43 OP4 Action 3: Voluntary Load
Curtailment

“ISO New England is requesting voluntary load
curtailment of market participants’ facilities in New
England.”

OP44 OP4 Action 4: Power Watch “This is a notification that additional OP 4 actions may
be implemented. In addition, if conditions warrant, ISO
New England may issue a public appeal for voluntary
electricity conservation. If the ISO asks for voluntary
conservation through this action, the public can conserve
electricity at home and at work by turning off
unnecessary lights, equipment, and appliances, and
minimizing the use of air conditioning. People who
require air conditioning and other electrical appliances for
health and safety reasons should not restrict their use.”

OP45 OP4 Action 5: Emergency
Energy Purchasing

“ISO New England is arranging to purchase available
emergency capacity and energy, or energy only, (if
capacity backing is not available) from market
participants or neighboring regions. Control Area to
Control Area transactions will normally be used as a last
resort, when market-based emergency energy transactions
are not available, or not available in a timely fashion.”
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Appendix C

Figure 4: Hierarchical distance-based clustering of all one-day-ahead features using Ward’s linkage.

Figure 5: Hierarchical clustering of one-day-ahead features after elimination of redundant features within
distance threshold of 0.25.

11



Appendix D

Table 7: The selected parameters for the GBT model using the
xgboost Python language implementation.

Variable Value Description
n_estimators 1000 Number of trees in the ensemble.
learning_rate 0.01
reg_lambda 1000 Strength of L2 regularization (λ).
max_depth 5
colsample_bynode 0.5 Proportion of features sampled at each node of a tree.
subsample 0.5 Proportion of observations sampled during each boosting

round.
max_delta_step 3 Useful for class imbalance. See reference [1].
gamma 10 Minimum loss reduction required for leaf node partition.
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Appendix E

Figure 6: Confusion matrices for test set predictions by the best model of each type. Clockwise, from top left:
Logistic Regression (lr_exp), SVM (svm_exp), KNN (knn_red), GBT (gbt_exp).
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Appendix F

Table 8: Full listing of features and their importance measures
for Logistic Regression, SVM, and GBT on the extended one to
six-day-ahead feature set.

Rank
Logistic Regression
Variable Name

Abs. Val. of LR
Coefficient

SVM
Variable
Name

Abs. Val. of
SVM Weight

GBT
Variable
Name

GBT
Accuracy
Gain

1 PPL_1 3.960496 PPL_1 1.647307 PS_3 0.061411
2 TGA_2 3.121723 ACWO_5 1.10353 PPL_2 0.054629
3 PPL_2 2.85314 ACWO_6 1.069217 PPL_1 0.04634
4 PPL_4 2.812669 TGA_2 1.018218 PS_6 0.030904
5 TGA_4 2.693831 PS_1 0.998177 ACWO_1 0.028123
6 HTB_5 2.274561 ACWO_1 0.993617 PS_2 0.027129
7 TGA_6 2.146682 PPL_2 0.900244 PS_1 0.026288
8 PPL_6 2.049483 PPL_4 0.889669 ACWO_6 0.025393
9 TGA_1 1.935402 HTB_6 0.880761 ACWO_5 0.024003

10 ACWO_5 1.908907 PPL_6 0.798596 ACWO_3 0.023457
11 HTB_2 1.843698 ADRR_5 0.788796 ACWO_2 0.023178
12 PS_1 1.81146 HTB_2 0.745746 CSO_1 0.022818
13 ITP_4 1.707533 TGA_4 0.717037 ACWO_4 0.021986
14 HTB_6 1.662613 HTB_5 0.705498 PPL_3 0.020365
15 ITP_3 1.629982 TGA_6 0.697166 CSO_2 0.019764
16 ACWO_1 1.610988 ITP_4 0.659119 RRR_2 0.019275
17 ACWO_2 1.316799 ITP_3 0.60047 CSO_6 0.019054
18 ACWO_6 1.29697 ACWO_3 0.599508 CSO_3 0.018018
19 TGA_3 1.220718 HTB_1 0.551044 PPL_6 0.017569
20 ADMO_2 1.199897 TGA_1 0.533337 RRR_1 0.017253
21 HTB_1 1.178018 ADMO_3 0.527023 PS_4 0.016895
22 ADRR_5 1.08827 ADRR_1 0.522572 RRR_3 0.016784
23 ACWO_4 1.056699 ADMO_2 0.470708 CSO_4 0.015723
24 ADMO_3 1.013792 PPL_3 0.412721 PPL_4 0.015367
25 ITP_5 0.919848 ADMO_6 0.397257 RRR_4 0.015118
26 ITP_2 0.861366 TGA_3 0.389044 PPL_5 0.014442
27 ACWO_3 0.759526 RRR_6 0.378629 ADMO_4 0.014166
28 PPL_5 0.753129 PS_5 0.370499 ADMO_3 0.014052
29 RRR_6 0.737458 PPL_5 0.342381 CSO_5 0.013687
30 ADRR_1 0.618764 ACWO_2 0.312487 RRR_6 0.012863
31 PS_3 0.570175 ITP_2 0.234433 HTB_6 0.012718
32 ITP_1 0.524755 ADMO_4 0.21003 RRR_5 0.012597
33 ADMO_4 0.506284 ITP_1 0.2099 PS_5 0.012511
34 PPL_3 0.434115 ITP_5 0.204972 ADRR_2 0.012249
35 PS_6 0.408404 ADRR_4 0.199881 ADRR_6 0.012143
36 ADMO_6 0.374987 HTB_4 0.153684 HTB_5 0.012137
37 TGA_5 0.364786 ADRR_6 0.152063 ADMO_2 0.011849
38 HTB_4 0.355267 RRR_3 0.144386 HTB_4 0.011836
39 CSO_6 0.344141 RRR_4 0.144338 ADRR_5 0.0118
40 RRR_4 0.259574 RRR_5 0.144291 TGA_6 0.011782
41 RRR_1 0.245847 ADRR_3 0.126556 TGA_1 0.011184
42 RRR_2 0.245847 ADMO_5 0.094372 ITP_6 0.010948
43 RRR_5 0.241444 RRR_1 0.090137 ADRR_1 0.010754
44 RRR_3 0.226371 RRR_2 0.090137 ITP_1 0.010689
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Rank
Logistic Regression
Variable Name

Abs. Val. of LR
Coefficient

SVM
Variable
Name

Abs. Val. of
SVM Weight

GBT
Variable
Name

GBT
Accuracy
Gain

45 PS_5 0.220903 TGA_5 0.08524 TGA_2 0.010652
46 ITP_6 0.175724 PS_3 0.079964 ADMO_1 0.010599
47 PS_4 0.16821 PS_2 0.078129 ITP_5 0.010314
48 ADRR_4 0.154637 ACWO_4 0.071077 TGA_3 0.010188
49 CSO_1 0.154496 PS_4 0.064612 HTB_3 0.010156
50 CSO_3 0.154327 CSO_3 0.059027 HTB_2 0.010031
51 ADRR_6 0.143781 CSO_4 0.058511 ITP_4 0.010027
52 ADMO_1 0.142532 HTB_3 0.054682 TGA_4 0.00999
53 PS_2 0.140397 CSO_6 0.051084 ITP_2 0.009954
54 CSO_4 0.113968 ITP_6 0.044044 ADMO_5 0.009797
55 ADRR_2 0.108312 CSO_5 0.034459 HTB_1 0.009748
56 ADRR_3 0.098819 ADRR_2 0.027439 ADRR_4 0.009152
57 ADMO_5 0.061675 CSO_2 0.023568 TGA_5 0.009138
58 CSO_2 0.05729 ADMO_1 0.022659 ITP_3 0.009004
59 HTB_3 0.049072 CSO_1 0.017714 ADMO_6 0
60 CSO_5 0.015176 PS_6 0.011723 ADRR_3 0
60 CSO_5 0.015176 PS_6 0.011723 ADRR_3 0
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Appendix G
Source code for this project is available on GitHub at https://github.com/willcoughlin/dmsl-project.
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